

Wednesday 2/26	Today's Topic: To write the Taylor Series and Maclaurin Series approximations for given functions
Key Idea:	
Definition of an <i>n</i> th-degree Taylor polynomial:	
If f has n derivatives	at $x = c$, then the polynomial
$P_n(x) = f(x)$	$c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^{2} + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^{n}$
is called the <u><i>n</i>th-degree Taylor polynomial for <i>f</i> centered at <i>c</i>, named after Brook Taylor, an English mathematician.</u>	
Note 1: A first-degree Taylor polynomial is a tangent line to f at c . Note 2: $\frac{f^{(n)}(c)}{n!}$ is the coefficient of the $(x-c)^n$ term	
If $c = 0$, then $P_n(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$ is called the <u><i>n</i>th-degree Maclaurin polynomial for f</u> , named after Scottish mathematician, Colin Maclaurin.	
In-Class Examples: Write the Taylor series for the given functions	
1) $f(x)=e^x$, $c=0$	2) $f(x) = \cos x, \ c = \frac{\pi}{2}$ 3) $f(x) = \frac{1}{x}, \ c = 2$
Homework: Worksheet 89	

Thursday 2/27	Today's Topic: More work on Taylor/Maclaurin Series	
Key Ideas: MEMORIZ	ZE!!!	
TABL Important Maclaurin Series Their Barlii of Converns	E I and ance $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	R = 1
	$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	$R = \infty$
	$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$
	$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$
	$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	R = 1
	$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$	R = 1
Homework: Workshee	et 90	

Friday 2/28	Today's Topic: Review
In-Class Examples: None	
Homework: Worksheet 91	

Monday 3/4	Today's Topic: Review
In-Class Examples: None	
Homework: Worksheet 92	

Tuesday 3/5	Today's Topic: Review
In-Class Examples: None	
Homework: Worksheet 93	

Wednesday 3/6	Today's Topic: Exam
In-Class Examples: None	
Homework: None	

Thursday 3/7	Today's Topic: Free Response Questions
In-Class Examples: None	
Homework: Worksheet 94	